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Abstract
For mathematical models of quantum waveguides, we show that in some
situations two interacting particles can be trapped more easily than a single
particle. In particular, we give an example of a waveguide that cannot bind
a single particle, but does have a geometrically induced bound state for two
bosons that attract each other via a harmonic potential. We also show that
Neumann boundary conditions are ‘stickier’ for two interacting bosons than
for a single one.

PACS number: 03.65.Ge
Mathematics Subject Classification: 81V99

1. Introduction

Over the last two decades a considerable amount of research has been done on mathematical
models for quantum waveguides (see, e.g., [1, 4, 6–9] and references therein). Typically a
particle in such a structure is modelled by a Schrödinger operator on some tube-like domain
in two or three dimensions. The main object of interest is the spectrum of these operators,
and especially their low-lying eigenvalues which indicate the presence of bound states for the
particle. Such trapped modes have been proven to exist, e.g., for tubes with local deformations,
bends or mixed boundary conditions. Much less is known, though, about the binding of several
interacting particles in such settings [10, 11, 13]. In [10] Exner and Vugalter addressed the
question how many fermions can be bound in a curved waveguide if they are non-interacting
or if they interact via a repulsive electrostatic potential. It is clear that, for these systems, a
smaller number of particles can be bound more easily than a higher number of particles. In the
present paper we consider the somewhat opposite case and show that under certain conditions
two bosons with an attractive interaction can be bound more easily than one particle alone.
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Our work is inspired by the analogous effect for Schrödinger operators1 in free space:
consider for a particle of mass m the operator

H = − 1

2m
� + V (x)

in L2(Rn) with a non-trivial, compactly supported and bounded potential V � 0. It is well
known that for n > 2 the attractive potential V may be too weak to have bound states, i.e., H
may not have negative eigenvalues. If this is the case, the same potential may still give rise
to bound states of a system of two particles that attract each other. This can be understood by
physical intuition if one assumes that the two particles act in some sense like one particle of
the double mass. After all, as far as the existence of eigenvalues is concerned, doubling the
mass has the same effect as doubling the strength of the potential. In the present paper we
discuss whether an analogous effect can occur for purely geometrically induced bound states
in waveguides.

More precisely, we describe a quantum mechanical particle in a waveguide by the Dirichlet
Laplacian −� in L2(�), where � is a straight strip or tube. The spectrum of this operator is
purely continuous and contains every real number above some threshold, which is the lowest
eigenvalue of the Laplace operator on the cross section of �. It is known that geometrical
perturbations like bending the tube or local deformations of the boundary can give rise to
eigenvalues of −� below this threshold. In analogy to the case of the Schrödinger operator
with a weak attractive potential, we ask the following question: does a waveguide exist that
does not have a bound state for one particle, but that does have a bound state for a system of
two interacting particles?

This question is not so easy to answer by physical intuition, because the existence or
non-existence of geometrically induced bound states for one particle does not depend on the
mass of the particle in question. This means that the intuitive ‘double mass argument’ for
two particles in an attractive potential does not apply to this situation. Despite that, we will
show in the following two sections that the answer to the question above is ‘yes’ by giving an
appropriate example.

2. Two-particle bound states in deformed waveguides

We assume our waveguide to be the domain � ⊂ R
2 given by

� = {(x, y) : |y| < f (x)}
where

f (x) =



1
2 for |x| > L/2,

ε/2 for x = ±L/2,

h/2 for |x| < L/2

with L > 0, h > 1 and 0 < ε < 1. We impose Dirichlet conditions on ∂�, which includes
the ‘barriers’ at x = ±L/2. Our geometry can be interpreted as a cavity of length L and width
h coupled weakly (if ε is small) to two semi-infinite straight waveguides. We choose to set
m = 1

2 , such that the one-particle Hamiltonian is simply H1 = −�. Then standard arguments
imply that

σess(H1) = [π2,∞).

Eigenvalues may occur depending on the choice of the parameters L, h and ε, but we will
show:
1 We choose units in which the Planck constant h̄ is equal to 1.
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Figure 1. Sketch of the waveguide �.

Lemma 2.1. If L−2 + h−2 > 1, then for small enough ε there are no eigenvalues of H1 below
π2, i.e., in this case the waveguide has no one-particle bound states.

On the other hand, we consider a system of two bosons of mass m = 1
2 , which interact

via the harmonic potential

V = α(x1 − x2)
2 + α(y1 − y2)

2.

Here xi and yi are the particle coordinates and α > 0 is the interaction strength. To define the
self-adjoint Hamilton operator of the system we use the quadratic forms

h−�[�] =
∫

�×�

|∇�|2 dx dy and hV [�] =
∫

�×�

V |�|2 dx dy,

both defined on C∞
0 (� × �). Then by [2, theorem 1.8.1], the sum of the two forms has a

closure h2 with

h2[�] = h−�[�] + hV [�]

for all � in

Dom(h2) = W
1,2
0 (� × �) ∩ Dom(hV ). (1)

The positive self-adjoint operator associated with h2 is

H2 = −∂2
x1

− ∂2
y1

− ∂2
x2

− ∂2
y2

+ V

in L2(� × �).

Lemma 2.2.

(a) For any choice of L , h and ε one has

σess(H2) ⊂ [
√

2α + 2π2,∞).

(b) There is a choice of the constants L and h with L−2 + h−2 > 1 such that

inf σ(H2) <
√

2α + 2π2

for every ε > 0, i.e., the operator H2 has a bound state.

From the above lemmas we conclude that a waveguide exists that has no bound state for
one particle, but does have a geometrically induced bound state for two interacting particles.

A remark on the physical interpretation of this effect is in order. As mentioned above, the
argument of two particles acting like one of the double mass does not apply to geometrically
induced bound states, since their existence is mass-independent. To gain a physical intuition
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for our results anyway, we note that a bound state in a waveguide with bulges can be seen as a
trade-off between reduced kinetic energy in the transverse direction (due to the enlarged cross
section) and increased kinetic energy in the longitudinal direction (due to the localization of
the particle). Consider now two particles that attract each other and that would in free space
form a ‘molecule’ with an average distance d between them. Assume for the case of our
waveguide � that d is considerably bigger than the cavity width h, but considerably smaller
than the cavity length L. This means that in their transverse movement the two particles act
rather as if they were independent of each other, thus receiving twice the energy decrease from
the enlarged cross section. In the longitudinal direction, on the other hand, the two particles
in the cavity behave like one particle of the double mass, such that the energy increase due to
longitudinal localization is only half of what it would be for one particle alone. It follows that
the energy trade-off is more ‘favourable’ for the system of two interacting particles than for a
single one.

3. Two-particle bound states caused by Neumann boundary conditions

If one introduces Neumann boundary conditions, an effect similar to the one described above
happens even for particles in only one dimension. Consider H3 = −∂2

x in L2(R+) with a
Neumann condition at x = 0. Then it is well known that σess(H3) = R

+ and H3 has no
eigenvalues. Nevertheless, the corresponding two-particle Hamiltonian with an harmonic
interaction turns out to have a bound state.

We define the potential V̂ = α|x1 − x2|2 and the forms

ĥ−�[�] =
∫

R
+×R

+
|∇�|2 dx1 dx2 and ĥV [�] =

∫
R

+×R
+
V̂ |�|2 dx1 dx2

on the restrictions of the functions in C∞
0 (R2) to R

+ × R
+. Then we can take h4 to be the

closure of ĥ−� + ĥV ; and its associated self-adjoint operator is

H4 = −∂2
x1

− ∂2
x2

+ α|x1 − x2|2

on L2(R+ × R
+) with Neumann boundary conditions at x1 = 0 and at x2 = 0 (see, e.g.,

[5, p 340]). The domain of h4 is

Dom(h4) = W 1,2(R+ × R
+) ∩ Dom(ĥV ). (2)

Lemma 3.1. The operator H4 has a bound state, i.e., an eigenvalue below the lower threshold
of the essential spectrum.

In view of lemma 3.1 it is no surprise that waveguides exist which have no one-particle
bound states, but which do have a two-particle bound state induced by mixed boundary
conditions. Omitting the proof, we only mention the simple example of a straight tube with
Dirichlet boundary conditions on the edge and an additional Neumann condition imposed on
one cross section.

4. Proofs of the results

Proof of lemma 2.1. We introduce the operator H̃ 1, which we define to be the Laplace
operator on � with Dirichlet conditions on ∂� and additional Neumann conditions on the set

{(x, y) : x = ±L/2 and |y| < |ε|}.
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To prove lemma 2.1 it is then sufficient to show that H̃ 1 has no spectrum below π2. With
the introduction of the new boundary conditions we have cut � into three separate domains:
two semi-strips �+ and �− in the positive and the negative x-direction, respectively, and the
rectangle �0 = (−L

2 , L
2 ) × (− h

2 , h
2 ). Thus H̃ 1 is the orthogonal sum of the Laplace operators

on �+,�− and �0 (subject to appropriate boundary conditions), and

σ(H̃ 1) = σ(−��+) ∪ σ(−��−) ∪ σ(−��0).

One can convince oneself easily that

σ(−��+) = σ(−��−) = [π2,∞).

The spectrum of −��0 is purely discrete and if we call λ(ε) its lowest eigenvalue then

λ(0) = π2(h−2 + L−2) > π2.

We can now apply a theorem of Gadyl’shin [12] to see that λ(ε) − λ(0) is of order ε2, i.e., for
small enough ε > 0 we have inf σ(−��0) > π2. Altogether this means that

inf σ(H1) � inf σ(H̃ 1) = π2 for small ε. �

Proof of lemma 2.2, part (a). Using the centre-of-mass coordinates

u = 1
2 (x2 + x1) and w = 1

2 (x2 − x1), (3)

we rewrite H2 in the form2

H2 = − 1
2∂2

u − 1
2∂2

w + 4αw2 − ∂2
y1

− ∂2
y2

+ α(y2 − y1)
2. (4)

To estimate the spectrum of H2 from below we introduce Neumann boundary conditions on

{(u,w, y1, y2) : |w| = β} and

{
(u,w, y1, y2) : |w| < β, |u| = β +

L

2

}
,

for some β > 0, which turns H2 into the orthogonal sum

H̃ 2 = H2|{|w|>β} ⊕ H2|{|w|<β,|u|<β+ L
2 } ⊕ H2|{|w|<β,|u|>β+ L

2 } .

The spectrum of H2|{|w|>β} can be estimated from below by 4αβ2 and the spectrum of
H2|{|w|<β,|u|<β+ L

2 } is discrete. By separation of variables the spectrum of H2|{|w|<β,|u|>β+ L
2 } is

found to be purely continuous and its lower threshold is equal to the lowest eigenvalue of the
‘transversal’ operator

Ht = − 1
2∂2

w + 4αw2 − ∂2
y1

− ∂2
y2

+ α(y2 − y1)
2

on L2((−β, β)×(−1/2, 1/2)2) with Neumann conditions at |w| = β and Dirichlet conditions
at |y1| = 1/2 and |y2| = 1/2. Neglecting the positive potential term α(y2 − y1)

2, we see that
the lowest eigenvalue of Ht is bigger than λβ + 2π2, where λβ is the lowest eigenvalue of the
harmonic oscillator − 1

2∂2
w + 4αw2 on (−β, β) with Neumann boundary conditions. Below we

will show that, for β → ∞, the eigenvalue λβ converges to
√

2α, i.e., the lowest eigenvalue
of the harmonic oscillator on R. Consequently, for large enough β, the lowest eigenvalue of
Ht is bigger than

√
2α + 2π2. Part (a) of lemma 2.2 now follows from the fact that H̃ 2 < H2

and the min-max principle.
It remains to show that limβ→∞ λβ = √

2α. Call hI = − 1
2∂2

w + 4αw2 the Hamiltonian of
the harmonic oscillator on the interval I ⊂ R with Neumann boundary conditions. Then

λβ = inf σ(h(−β,β)) = inf σ(h(−∞,−β) ⊕ h(−β,β) ⊕ h(β,∞)) � inf σ(hR) =
√

2α.

2 In a slight abuse of notation we write H2 for the two-particle Hamiltonian in Euclidean coordinates and for its
unitarily equivalent counterpart in centre-of-mass coordinates.
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The second step in the above chain of equalities follows from

inf σ(h(−β,β)) � 4αβ2 and inf σ(h(−∞,−β)) = inf σ(h(β,∞)) � 4αβ2.

Next we show that h(−β,β) has a first eigenfunction that is symmetric, non-negative and
decreasing in |w|. Let φβ be a normalized function such that h(−β,β)φβ = λβφβ . We may
assume that φβ is either symmetric or antisymmetric, since otherwise we can replace it by
φβ(w) + φβ(−w). We write φ�

β for the symmetric decreasing rearrangement of φβ (see [16]
for the definition and properties of rearrangements). Then φ�

β is also normalized and belongs
to the form domain W 1,2((−β, β)) of h(−β,β). The min-max principle yields

λβ �
∫ β

−β

(
1

2
|φ�

β
′|2 + 4αw2φ�

β
2
)

dw

�
∫ β

−β

(
1

2
|φβ

′|2 + 4αw2φβ
2

)
dw = λβ. (5)

The second inequality in (5) follows from standard rearrangement theorems3. The inequality
is strict (and thus a contradiction) unless |φβ | is decreasing in |w|. This shows that φβ can be
taken to be a non-negative symmetric eigenfunction to λβ which is decreasing in |w|. Then
we have ∫ β

−β

4αw2φ2
β(β) dw �

∫ β

−β

4αw2φ2
β(w) dw � λβ �

√
2α

and thus

φβ(β) � 2−5/431/2α−1/4β−3/2. (6)

Now set

φ̃β(w) =



φβ(w) for |w| � β,

φβ(β)(−|w| + β + 1) for β < |w| � β + 1
0 for β + 1 < |w|.

Then φ̃β is in the form domain of hR and we have

√
2α = inf σ(hR) �

∫
R

(
1
2 φ̃′

β(w)2 + 4αw2φ̃2
β(w)

)
dw∫

R
φ̃2

β(w) dw

� λβ + 2
∫ β+1

β

(
1

2
φ2

β(β) + 4αw2φ2
β(β)

)
dw

= λβ + φ2
β(β) +

8

3
αφ2

β(β)(3β2 + 3β + 1). (7)

In the penultimate step we used that
∫

R
φ̃2

β(w) dw �
∫ β

−β
φ2

β(w) dw = 1 and the Ritz–Rayleigh
characterization of λβ . From (6) we conclude that (7) converges to λβ as β → ∞ and therefore
limβ→∞ λβ = √

2α. �

Proof of lemma 2.2, part (b). We choose to fix the relations

α = L−2 and h−2 + L−2 =: M > 1 (8)

3 The estimate
∫ β

−β
|φ�

β
′|2 dw � ∫ β

−β
|φβ

′|2 dw is a typical rearrangement property. It is usually stated for functions
that go to zero at the boundary of their domain, but it also holds in the present case: Replacing φβ(w) by
|φβ(w)|−|φβ(β)| and φ�

β(w) by (|φβ(w)|−|φβ(β)|)� does not change the value of the integrals, and |φβ(w)|−|φβ(β)|
is zero for w = ±β by (anti-) symmetry of φβ .
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between the parameters that describe our waveguide. We define the domain �̃ as the set of all
(x1, y1, x2, y2) that satisfy the conditions

u ∈
(

−3L

8
,

3L

8

)
, w ∈

(
−L

8
,
L

8

)
, y1, y2 ∈

(
−h

2
,
h

2

)
,

using the coordinates u and w as defined in (3). One can check that �̃ ⊂ � × �. We now
define the test function � by

� =
(

cos
4πu

3L

)
· (φ(w) − C) ·

(
cos

πy1

h

)
·
(

cos
πy2

h

)

on �̃ and � = 0 on (� × �)\�̃, setting

φ(w) = e−√
2αw2

and C = φ(L/8).

Because the function � is Lipschitz continuous, has a bounded support and vanishes at
∂(� × �), we have � ∈ W

1,2
0 (� × �). Since the potential V , restricted to the support of

�, is bounded, we also have � ∈ Dom(hV ). By (1) this means that � ∈ Dom(h2). In the
centre-of-mass coordinates the quadratic form of H2 reads

h2[�] =
∫ (

1

2
(∂u�)2 +

1

2
(∂w�)2 + (∂y1�)2 + (∂y2�)2

+ 4αw2|�|2 + α(y1 − y2)
2|�|2

)
dw du dy1 dy2.

No we can apply the min-max principle with � as a test function to obtain

inf σ(H2)� h2[�]

‖�‖2
= 8π2

9L2
+

2π2

h2
+

π2 − 6

6π2
αh2 +

∫ L/8
−L/8(

1
2φ′(w)2 + 4αw2(φ(w) − C)2) dw∫ L/8

−L/8(φ(w) − C)2 dw
.

(9)

The last term can be estimated from above by∫ L/8
−L/8

(
1
2φ′(w)2 + 4αw2φ(w)2

)
dw∫ L/8

−L/8(φ
2(w) − 2Cφ(w)) dw

,

which can, after an integration by parts, be written as√
2α +

( ∫ L/8
−L/8 φ2(w) dw

)−1[ 1
2φ(w)φ′(w)

]L/8
−L/8

1 − 2C
( ∫ L/8

−L/8 φ2(w) dw
)−1 ∫ L/8

−L/8 φ(w) dw

<

√
2α

1 − 2 e−√
2L/64

( ∫ L/8
−L/8 e−2

√
2L−1w2 dw

)−1 ∫ L/8
−L/8 e−√

2L−1w2 dw

where in the last step we have used that α = L−2 and thus C = e−√
2L/64. Replacing w by

the new variable w̃ = w/
√

L one can check that the product of the two integrals in the last
line converges to a constant as L → ∞. Therefore, the last term in (9) can be estimated from
above by

√
2α + O(L−1e−√

2L/64) for large enough L, which means that in view of (8),

inf σ(H2) <
√

2α + 2Mπ2 − 10π2

9L2
+

π2 − 6

6π2(L2 − 1)
+ O(L−1 e−√

2L/64).

If we choose L sufficiently large then the three last summands together are negative. If we
then choose M sufficiently close to one, we get, independently of ε,

inf σ(H2) <
√

2α + 2π2,

proving part (b) of lemma 2.2. �
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Proof of lemma 3.1. In the centre-of-mass coordinates H4 acts in L2({(u,w) : u > 0, |w| <

u}) and takes the form4

H4 = − 1
2∂2

u − 1
2∂2

w + 4αw2.

Using a similar argument as in the proof of lemma 2.2, part (a), one can show that

σess(H4) = [
√

2α,∞).

It remains to prove that H4 has an eigenvalue below
√

2α. We call φ(w) the (positive and
normalized) lowest eigenfunction of the harmonic oscillator − 1

2∂2
w + 4αw2 in L2(R) and note

that the corresponding eigenvalue is
√

2α. We define the test function

�(u,w) = φ(w) e−εu for u > 0, |w| < u and some ε > 0.

We have � ∈ W 1,2({(u,w) : u > 0, |w| < u}) and since � drops off exponentially for

u, |w| → ∞, while V is only quadratic, also � ∈ Dom(ĥV ) holds. Thus � is in the form
domain (2) of H4 and we can apply the min-max principle [14] to obtain

inf σ(H4) �

∫
u>0
|w|<u

(
1
2 (∂u�)2 + 1

2 (∂w�)2 + 4αw2�2
)

dw du∫
u>0
|w|<u

�2 dw du

= 1

2
ε2 +

√
2α +

∫
u>0

[
1
2φ(w)φ′(w)

]u

−u
e−2εu du∫

u>0
|w|<u

�2 dw du
.

In the last step we used an integration by parts in w and the fact that φ satisfies the eigenvalue
equation of the harmonic oscillator. The last summand is negative since φ(w) is positive,
symmetric and decreasing in |w|; thus we have the estimate

inf σ(H4) � 1

2
ε2 +

√
2α +

∫
u>0

[
1
2φ(w)φ′(w)

]u

−u
e−2εudu∫

u>0
w∈R

�2 dw du

= 1

2
ε2 +

√
2α + 2ε

∫
u>0

φ(u)φ′(u) e−2εudu

=
√

2α + ε

(
1

2
ε + 2

∫
u>0

φ(u)φ′(u) e−2εu du

)
.

The integral in the last line is negative and its absolute value increases when ε goes to
zero. Consequently, for some small enough ε we have inf σ(H̃ 4) <

√
2α, which proves

lemma 3.1. �
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